首页 > 学习资料 > 学科资料 > 数学 >

数学女孩2费马大定理读后感

yiyyy分享 61167

yiyyy 分享

高数一元函数微分学。

费马定理是什么

还有第二个问号那是啥意思

正常那个等式相等不就意味着二阶导

1994年10月,数学教授,终于圆了童年的梦想,证明了。

他的论文发表在1995年5月的上。

源自法国人。

费马生于1601年8月20日,卒于1665年1月12日,是法国地方政府系统中的文职官员,又是业余数学爱好者。

从职业上说,他是业余数学家;而从数学成就上说,他足以跻身于伟大专业数学家行列。

所谓,或(在未证明之前,只能称之为猜想),得从直角三角形的勾股定理(或称毕达哥拉斯定理)说起。

学过平面三角的人都知道,直角三角形两直角边的平方之和等于其斜边的平方。

或者写成代数式子,即为x^2+y^2=Z^2。

勾股定理中的X、Y和Z有整数解。

可以证明,这种X、Y和Z的组合有无限多个。

但是,如果把上述公式中的指数2改为3,或更一般地,改为大于2的整数N,则发现难于找到X、Y和Z的整数解。

大约在1637年前后,费马在他保存的一书的页边处写道:“不可能将一个立方数写成两个立方数之和;或者将一个四次幂写成两个四次幂之和;总的来说,不可能将一个高于两次的幂写成两个同样次幂的和”。

他又写了一个附加评注:“我有一个对这命题的十分美妙的证明,这里空白太小,写不下。

”这就是费马大定理。

费马逝世后,他的长子克来孟一缪塞尔·费马意识到他父亲的业余爱好所具有的重要意义,花了5年时间,整理了其父在一书上的页边空白处的评注,于1670年出版了附有费马注评的的特殊版本。

费马大定理才得以公诸于世,并传于后世。

费马大定理看起来很简单,很容易理解,但要证明它却难住了300多年来一代代杰出的数学家。

更重要的是,在证明“费马大定理”的过程中,形成了许多新的数学分支,促进了数学的进一步发展。

称之为“会生金蛋的母鸡”。

费马大定理有没有被证明出来

给谁证明出来了

在什么时候

马猜想Fermat's conjecture〕又称费马大定理马问题,是数论中最的世界难题之一。

1637年国数学家费马在巴歇校订的希腊数学家丢番图的《算术》第II卷第8命题旁边写道:「将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。

关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。

」费马去世后,人们找不到这个猜想的证明,由此激发起许多数学家的兴趣。

欧拉、勒让德、高斯、阿贝尔、狄利克雷、柯西等大数学家都试证过,但谁也没有得到普遍的证法。

300多年以来,无数优秀学者为证明这个猜想,付出了巨大精力,同时亦产生出不少重要的数学概念及分支。

若用不定方程来表示,费马大定理即:当n > 2时,不定方程xn + y n = z n 没有xyz≠0的整数解。

为了证明这个结果,只需证明方程x4 + y 4 = z 4 ,(x , y) = 1和方程xp + yp = zp ,(x , y) = (x , z) = (y , z) = 1〔p是一个奇素数〕均无xyz≠0的整数解。

n = 4的情形已由莱布尼茨和欧拉解决。

费马本人证明了p = 3的情,但证明不完全。

勒让德〔1823〕和狄利克雷〔1825〕证明了p = 5的情形。

1839年,拉梅证明了p = 7的情形。

1847年,德国数学家库默尔对费马猜想作出了突破性的工作。

他创立了理想数论,这使得他证明了当p < 100时,除了p = 37,59,67这三个数以外,费马猜想都成立。

后来他又进行深入研究,证明了对于上述三个数费马猜想也成立。

在近代数学家中,范迪维尔对费马猜想作出重要贡献。

他从本世纪20年代开始研究费马猜想,首先发现并改正了库默尔证明中的缺陷。

在以后的30余年内,他进行了大量的工作,得到了使费马猜想成立一些充分条件。

他和另外两位数学家共同证明了当p < 4002时费马猜想成立。

现代数学家还利用大型电子计算器来探索费马猜想,使p 的数目有很大的推进。

到1977年为止,瓦格斯塔夫证明了p < 125000时,费马猜想成立。

《中国数学会通讯》1987年第2期据国外消息报导,费马猜想近年来取得了惊人的研究成果:格朗维尔和希思—布龙证明了「对几乎所有的指数,费马大定理成立」。

即若命N(x)表示在不超过x的整数中使费马猜想不成立的指数个数,则 证明中用到了法尔廷斯〔Faltings〕的结果。

另外一个重要结果是:费马猜想若有反例,即存在x > 0,y > 0,z > 0,n > 2,使xn + y n = z n ,则x > 101,800,000。

求费马大定理的全部证明过程

费马大定理证程:   对费马方程x^n+y^n=z^n解关系的证明,多年来在数学界争议。

本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,提出对多元代数式应用增元求值。

本文给出的直角三角型边长a^2+b^2=c^2整数解的“定a计算法则”;“增比计算法则”;“定差公式法则”;“a值奇偶数列法则”;是平方整数解的代数条件和实践方法;本文提出建立了一元代数式的绝对方幂式与绝对非方幂式概念;本文利用同方幂数增比性质,利用整数方幂数增项差公式性质,把费马方程x^n+y^n=z^n原本三元高次不定方程的整数解判定问题,巧妙地化为了一元定解方程问题。

  关键词:增元求解法 绝对方幂式绝对非方幂式 相邻整数方幂数增项差公式   引言:1621年,法国数学家费马(Fermat)在读看古希腊数学家丢番图(Diophantna)著写的算术学一书时,针对书中提到的直角三角形三边整数关系,提出了方程x^n+y^n=z^n在n=2时有无穷多组整数解,在n>2时永远没有整数解的观点。

并声称自己当时进行了绝妙的证明。

这就是被后世人称为费马大定理的旷世难题。

时至今日,此问题的解答仍繁难冗长,纷争不断,令人莫衷一是。

  本文利用直角三角形、正方形的边长与面积的相互关系,建立了费马方程平方整数解新的直观简洁的理论与实践方法,本文利用同方幂数增比定理,对费马方程x^n+y^n=z^n在指数n>2时的整数解关系进行了分析论证,用代数方法再现了费马当年的绝妙证明。

  定义1.费马方程   人们习惯上称x^n+y^n=z^n关系为费马方程,它的深层意义是指:在指数n值取定后,其x、y、z均为整数。

  在直角三角形边长中,经常得到a、b、c均为整数关系,例如直角三角形 3 、4、 5 ,这时由勾股弦定理可以得到3^2+4^2=5^2,所以在方次数为2时,费马方程与勾股弦定理同阶。

当指数大于2时,费马方程整数解之研究,从欧拉到狄里克莱,已经成为很大的一门数学分支.   定义2.增元求解法   在多元代数式的求值计算中引入原计算项元以外的未知数项元加入,使其构成等式关系并参与求值运算。

我们把利用增加未知数项元来实现对多元代数式求值的方法,叫增元求解法。

  利用增元求解法进行多元代数式求值,有时能把非常复杂的问题变得极其简单。

  下面,我们将利用增元求解法来实现对直角三角形三边a^2+b^2=c^2整数解关系的求值。

  一,直角三角形边长a^2+b^2=c^2整数解的“定a计算法则”   定理1.如a、b、c分别是直角三角形的三边,Q是增元项,且Q≥1,满足条件:   a≥3   { b=(a^2-Q^2)÷2Q   c= Q+b   则此时,a^2+b^2=c^2是整数解;   证:在正方形面积关系中,由边长为a得到面积为a^2,若(a^2-Q^2)÷2Q=b(其中Q为增元项,且b、Q是整数),则可把面积a^2分解为a^2=Q^2+Qb+Qb,把分解关系按下列关系重新组合后可得到图形:   Q2 Qb   其缺口刚好是一个边长为b的正方形。

补足缺口面积b^2后可得到一个边长   Qb   为Q+b的正方形,现取Q+b=c,根据直角三角形边长关系的勾股弦定理a^2+b^2=c^2条件可知,此时的a、b、c是直角三角形的三个整数边长。

  故定理1得证   应用例子:   例1. 利用定a计算法则求直角三角形a边为15时的边长平方整数解?   解:取 应用例子:a为15,选增元项Q为1,根据定a计算法则得到:   a= 15   { b=(a^2- Q^2)÷2Q=(15^2-1^2)÷2 =112   c=Q+b=1+112=113   所以得到平方整数解15^2+112^2=113^2   再取a为15,选增元项Q为3,根据定a计算法则得到:   a= 15   { b=(a^2-Q^2)÷2Q=(15^2-3^2)÷6=36   c=Q+b=3+36=39   所以得到平方整数解15^2+36^2=39^2   定a计算法则,当取a=3、4、5、6、7 … 时,通过Q的不同取值,将函盖全部平方整数解。

  二,直角三角形边长a^2+b^2=c^2整数解“增比计算法则”   定理2.如a^2+b^2=c^2 是直角三角形边长的一组整数解,则有(an)^2+(bn)^2 =(cn)^2(其中n=1、2、3…)都是整数解。

  证:由勾股弦定理,凡a^2+b^2=c^2是整数解必得到一个边长都为整数的直角三角形 a c ,根据平面线段等比放大的原理,三角形等比放大得到 2a 2c;   b 2b   3a 3c;4a 4c;… 由a、b、c为整数条件可知,2a、2b、2c;   3b 4b   3a、3b、3c;4a、4b、4c… na、nb、nc都是整数。

  故定理2得证   应用例子:   例2.证明303^2+404^2=505^2是整数解

  解;由直角三角形3 5 得到3^2+4^2=5^2是整数解,根据增比计   4   算法则,以直角三角形 3×101 5×101 关系为边长时,必有   4×101   303^2+404^2=505^2是整数解。

  三,直角三角形边长a^2+b^2=c^2整数解“定差公式法则”   3a + 2c + n = a1   (这里n=b-a之差,n=1、2、3…)   定理3.若直角三角形a^2+^b2=c^2是满足b-a=n关系的整数解,那么,利用以上3a+2c+ n = a1公式连求得到的a1、a2、a3…ai 所组成的平方数组ai^2+bi^2=ci^2都是具有b-a=n之定差关系的整数解。

  证:取n为1,由直角三角形三边3、4、5得到3^2+4^2=5^2,这里n=b-a=4-3=1,根据 3a + 2c + 1= a1定差公式法则有:   a1=3×3+2×5+1=20 这时得到   20^2+21^2=29^2 继续利用公式计算得到:   a2=3×20+2×29+1=119 这时得到   119^2+120^2=169^2 继续利用公式计算得到   a3=3×119+2×169+1=696 这时得到   696^2+697^2=985^2   …   故定差为1关系成立   现取n为7,我们有直角三角形21^2+28^2=35^2,这里n=28-21=7,根据 3a + 2c + 7 = a1定差公式法则有:   a1=3×21+2×35+7=140 这时得到   140^2+147^2=203^2 继续利用公式计算得到:   a2=3×140+2×203+7=833 这时得到   833^2+840^2=1183^2 继续利用公式计算得到:   a3=3×833+2×1183+7=4872 这时得到   4872^2+4879^2=6895^2   …   故定差为7关系成立   再取n为129,我们有直角三角形387^2+516^2=645^2,这里n=516-387=129,根据 3a + 2c + 129= a1定差公式法则有:   a1=3×387+2×645+129=2580 这时得到   2580^2+2709^2=3741^2 继续利用公式计算得到:   a2=3×2580+2×3741+129=15351 这时得到   15351^2+15480^2=21801^2 继续利用公式计算得到:   a3=3×15351+2×21801+129=89784 这时得到   89784^2+89913^2=127065^2   …   故定差为129关系成立   故定差n计算法则成立   故定理3得证   四,平方整数解a^2+^b2=c^2的a值奇偶数列法则:   定理4. 如a^2+^b2=c^2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立;   (一) 奇数列a:   若a表为2n+1型奇数(n=1、2、3 …), 则a为奇数列平方整数解的关系是:   a=2n+1   { c=n^2+(n+1)^2   b=c-1   证:由本式条件分别取n=1、2、3 … 时得到:   3^2+4^2=5^2   5^2+12^2=13^2   7^2+24^2=25^2   9^2+40^2=41^2   11^2+60^2=61^2   13^2+84^2=85^2   …   故得到奇数列a关系成立   (二)偶数列a:   若a表为2n+2型偶数(n=1、2、3 …), 则a为偶数列平方整数解的关系是:   a=2n+2   { c=1+(n+1)^2   b=c-2   证:由本式条件分别取n=1、2、3 … 时得到:   4^2+3^2=5^2   6^2+8^2=10^2   8^2+15^2=17^2   10^2+24^2=26^2   12^2+35^2=37^2   14^2+48^2=50^2   …   故得到偶数列a关系成立   故定理4关系成立   由此得到,在直角三角形a、b、c三边中:   b-a之差可为1、2、3…   a-b之差可为1、2、3…   c-a之差可为1、2、3…   c-b之差可为1、2、3…   定差平方整数解有无穷多种;   每种定差平方整数解有无穷多个。

  以上,我们给出了平方整数解的代数条件和实践方法。

我们同样能够用代数方法证明,费马方程x^n+y^n=z^n在指数n>2时没有整数解。

证明如下:   我们首先证明,增比计算法则在任意方次幂时都成立。

  定理5,若a,b,c都是大于0的不同整数,m是大于1的整数,如有a^m+b^m=c^m+d^m+e^m同方幂关系成立,则a,b,c,d,e增比后,同方幂关系仍成立。

  证:在定理原式 a^m+b^m=c^m+d^m+e^m中,取增比为n,n>1,   得到 : (n a)^m+(nb)^m=(nc)^m+(nd)^m+(ne)^m   原式化为 : n^m(a^m+b^m)=n^m(c^m+d^m+e^m)   两边消掉 n^m后得到原式。

  所以,同方幂数和差式之间存在增比计算法则,增比后仍是同方幂数。

  故定理5得证   定理6,若a,b,c是不同整数且有a^m+b=c^m关系成立,其中b>1,b不是a,c的同方幂数,当a,b,c同比增大后,b仍然不是a,c的同方幂数。

  证:取定理原式a^m+b=c^m   取增比为n,n>1,得到:(na)^m+n^mb=(nc)^m   原式化为: n^m(a^m+b)=n^mc^m   两边消掉n^m后得到原式。

  由于b不能化为a,c的同方幂数,所以n^mb也不能化为a,c的同方幂数。

  所以,同方幂数和差式间含有的不是同方幂数的数项在共同增比后,等式关系仍然成立。

其中的同方幂数数项在增比后仍然是同方幂数,不是同方幂数的数项在增比后仍然是非同方幂数。

  故定理6得证   一元代数式的绝对方幂与绝对非方幂性质   定义3,绝对某次方幂式   在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都是某次完全方幂数,我们称这时的代数式为绝对某次方幂式。

例如:n^2+2n+1,n^2+4n+4,   n^2+6n+9,……都是绝对2次方幂式;而n^3+3n^2+3n+1,n^3+6n^2+12n+8,……都是绝对3次方幂式。

  一元绝对某次方幂式的一般形式为(n+b)^m(m>1,b为常数项)的展开项。

  定义4,绝对非某次方幂式   在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都不是某次完全方幂数,我们称这时的代数式为绝对非某次方幂式。

例如:n^2+1,n^2+2,n^2+2n,…… 都是绝对非2次方幂式;而n^3+1,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,n^3+6n^2+8……都是绝对非3次方幂式。

  当一元代数式的项数很少时,我们很容易确定代数式是否绝对非某次方幂式,例如n^2+n是绝对非2次方幂式,n^7+n是绝对非7次方幂式,但当代数式的项数很多时,得到绝对非某次方幂式的条件将越来越苛刻。

  一元绝对非某次方幂式的一般形式为:在(n+b)^m(m>2,b为常数项)的展开项中减除其中某一项。

  推理:不是绝对m次方幂式和绝对非m次方幂式的方幂代数式必定在未知数取某一值时得出一个完全m次方数。

例如:3n^2+4n+1不是绝对非3次方幂式,取n=1时有3n^2+4n+1=8=2^3,3n^2+3n+1不是绝对非2次方幂式,当n=7时,3n^2+3n+1=169=13^2;   推理:不含方幂项的一元代数式对任何方幂没有唯一性。

2n+1=9=3^2,2n+1=49=7^2 …… 4n+4=64=8^2,4n+4=256=16^2 ……2n+1=27=3^3,2n+1=125=5^3 ……   证明:一元代数式存在m次绝对非方幂式;   在一元代数式中,未知数的不同取值,代数式将得到不同的计算结果。

未知数与代式计算结果间的对应关系是唯一的,是等式可逆的,是纯粹的定解关系。

这就是一元代数式的代数公理。

即可由代入未知数值的办法对代数式求值,又可在给定代数式数值的条件下反过来对未知数求值。

利用一元代数式的这些性质,我们可实现整数的奇偶分类、余数分类和方幂分类。

  当常数项为1时,完全立方数一元代数表达式的4项式的固定形式是(n+1)^3=n^3+3n^2+3n+1,它一共由包括2个方幂项在内的4个单项项元组成,对这个代数式中3个未知数项中任意一项的改动和缺失,代数式都无法得出完全立方数。

在保留常数项的前提下,我们锁定其中的任意3项,则可得到必定含有方幂项的3个不同的一元代数式,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,对这3个代数式来说,使代数式的值成为立方数只能有唯一一个解,即补上缺失的第4项值,而且这个缺失项不取不行,取其它项值也不行。

因为这些代数式与原立方代数式形成了固定的单项定差代数关系,这种代数关系的存在与未知数取值无关。

这种关系是:   (n+1)^3-3n= n^3+3n^2+1   (n+1)^3-3n^2= n^3+3n+1   (n+1)^3-n^3=3n^2+3n+1   所以得到:当取n=1、2、3、4、5 …   n^3+3n^2+1≠(n+1)^3   n^3+3n+1≠(n+1)^3   3n2+3n+1≠(n+1)^^3   即这3个代数式的值都不能等于(n+1)^3形完全立方数。

  当取n=1、2、3、4、5 …时,(n+1)^3=n^3+3n^2+3n+1的值是从2开始的全体整数的立方,而 小于2的整数只有1,1^3=1,当取n=1时,   n^3+3n^2+1=5≠1   n^3+3n+1=5≠1   3n^2+3n+1=7≠1   所以得到:当取n=1、2、3、4、5 …时,代数式n^3+3n^2+1,n^3+3n+1,3n^2+3n+1的值不等于全体整数的立方数。

这些代数式是3次绝对非方幂式。

  由以上方法我们能够证明一元代数式:n^4+4n^3+6n^2+1,n^4+4n^3+4n+1,n^4+6n^2+4n+1,4n^3+6n^2+4n+1,在取n=1、2、3、4、5 …时的值永远不是完全4次方数。

这些代数式是4次绝对非方幂式。

  能够证明5次方以上的一元代数式(n+1)^m的展开项在保留常数项的前提下,锁定其中的任意m项后,可得到m个不同的一元代数式,这m个不同的一元代数式在取n=1、2、3、4、5 …时的值永远不是完全m次方数。

这些代数式是m次绝对非方幂式。

  现在我们用代数方法给出相邻两整数n与n+1的方幂数增项差公式;   2次方时有:(n+1)^2-n^2   =n^2+2n+1-n^2   =2n+1   所以,2次方相邻整数的平方数的增项差公式为2n+1。

  由于2n+1不含有方幂关系,而所有奇数的幂方都可表为2n+1,所以,当2n+1为完全平方数时,必然存在n^2+(2√2n+1)^2=(n+1)^2即z-x=1之平方整数解关系,应用增比计算法则,我们即可得到z-x=2,z-x=3,z-x=4,z-x=5……之平方整数解关系。

但z-x>1的xyz互素的平方整数解不能由增比法则得出,求得这些平方整数解的方法是:   由(n+2)^2-n^2=4n+4为完全平方数时得出全部z-x=2的平方整数解后增比;   由(n+3)^2-n^2=6n+9为完全平方数时得出全部z-x=3的平方整数解后增比;   由(n+4)^2-n^2=8n+16为完全平方数时得出全部z-x=4的平方整数解后增比;   ……   这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,我们可得到整数中全部平方整数解。

  所以费马方程x^n+y^n=z^n在指数为2时成立。

  同时,由于所有奇数的幂方都可表为2n+1及某些偶数的幂方可表为4n+4,6n+9,8n+16 …… 所以,还必有x^2+y^n=z^2整数解关系成立。

  3次方时有:(n+1)^3-n^3   =n^3+3n^2+3n+1-n^3   =3n^2+3n+1   所以,3次方相邻整数的立方数的增项差公式为3n^2+3n+1。

  由于3n^2+3n+1是(n+1)^3的缺项公式,它仍然含有幂方关系,是3次绝对非方幂式。

所以,n为任何整数时3n^2+3n+1的值都不是完全立方数,因而整数间不存在n^3+(3√3n^2+3n+1 )^3=(n+1)^3即z-x=1之立方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之立方整数解关系。

但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些立方费马方程式的方法是:   由(n+2)^3-n^3=6n2+12n+8,所以,n为任何整数它的值都不是完全立方数;   由(n+3)^3-n^3=9n2+27n+27,所以,n为任何整数它的值都不是完全立方数;   由(n+4)^3-n^3=12n2+48n+64,所以,n为任何整数它的值都不是完全立方数;   ……   这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程3次方关系经过增比后将覆盖全体整数。

  所以费马方程x^n+y^n=z^n在指数为3时无整数解。

  4次方时有;(n+1)^4-n^4   =n^4+4n^3+6n^2+4n+1-n^4   =4n^3+6n^2+4n+1   所以,4次方相邻整数的4次方数的增项差公式为4n^3+6n^2+4n+1。

  由于4n^3+6n^2+4n+1是(n+1)^4的缺项公式,它仍然含有幂方关系,是4次绝对非方幂式。

所以,n为任何整数时4n^3+6n^2+4n+1的值都不是完全4次方数,因而整数间不存在n^4+(4√4n3+6n2+4n+1)^4=(n+1)^4即z-x=1之4次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之4次方整数解关系。

但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些4次方费马方程式的方法是:   由(n+1)^4-n^4=8n3+24n2+32n+16,所以,n为任何整数它的值都不是完全4次方数;   由(n+1)^4-n^4=12n3+54n2+108n+81,所以,n为任何整数它的值都不是完全4次方数;   由(n+1)^4-n^4=16n3+96n2+256n+256,所以,n为任何整数它的值都不是完全4次方数;   ……   这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程4次方关系经过增比后将覆盖全体整数。

  所以费马方程x^n+y^n=z^n在指数为4时无整数解。

  m次方时,相邻整数的方幂数的增项差公式为:   ( n+1)^m-n^m   =n^m+mn^m-1+…+…+mn+1-n^m   =mn^m-1+…+…+mn+1   所以,m次方相邻整数的m次方数的增项差公式为mn^m-1+…+…+mn+1。

  由于mn^m-1+…+…+mn+1是(n+1)^m的缺项公式,它仍然含有幂方关系,是m次绝对非方幂式。

所以,n为任何整数时mn^m-1+…+…+mn+1 的值都不是完全m次方数,因而整数间不存在n^m+(m√mn^m-1+…+…+mn+1)^m =(n+1)^m即z-x=1之m次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之m次方整数解关系。

但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些m次方费马方程式的方法是:   由(n+2)^m-n^m=2mn^m-1+…+…+2^m-1 mn+2^m,所以,n为任何整数它的值都不是完全m次方数;   由(n+3)^m-n^m=3mn^m-1+…+…+3^m-1 mn+3^m,所以,n为任何整数它的值都不是完全m次方数;   由(n+4)^m-n^m=4mn^m-1+…+…+4^m-1 mn+4^m,所以,n为任何整数它的值都不是完全m次方数;   ……   这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程m次方关系经过增比后将覆盖全体整数。

  所以费马方程x^n+y^n=z^n在指数为m时无整数解。

  所以费马方程x^n+y^n=z^n在指数n>2时永远没有整数解。

  费马大定理: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 无正整数解。

  费马矩阵大定理:当整数n > 2时,关于m行m列矩阵X, Y, Z的不定矩阵方程 X^n + Y^n =Z^n. 矩阵的元素中至少有一个零。

当整数n = 2时,求m行m列矩阵X, Y, Z。

著名的费马大定理被哪个国家的科学家破译的

费尔马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。

终于在1994年被安德鲁·怀尔斯攻克。

古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。

1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:方程xn + yn = zn(n是上标)(这里n大于2;a,b,c,n都是非零整数)。

此猜想后来就称为费尔马大定理。

费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。

一般公认,他当时不可能有正确的证明。

猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。

1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。

历史上费尔马大定理高潮迭起,传奇不断。

其惊人的魅力,曾在最后时刻挽救自杀青年于不死。

他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。

无数人耗尽心力,空留浩叹。

最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。

1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。

历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在“谷山丰—志村五朗猜想 ” 之中。

童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。

终于在1993年6月23日剑桥大学牛顿研究所的“世纪演讲”最后,宣布证明了费尔马大定理。

立刻震动世界,普天同庆。

不幸的是,数月后逐渐发现此证明有漏洞,一时更成世界焦点。

这个证明体系是千万个深奥数学推理连接成千个最现代的定理、事实和计算所组成的千百回转的逻辑网络,任何一环节的问题都会导致前功尽弃。

怀尔斯绝境搏斗,毫无出路。

1994年9月19日,星期一的早晨,怀尔斯在思维的闪电中突然找到了迷失的钥匙:解答原来就在废墟中

他热泪夺眶而出。

怀尔斯的历史性长文“模椭圆曲线和费尔马大定理”1995年5月发表在美国《数学年刊》第142卷,实际占满了全卷,共五章,130页。

1997年6月27日,怀尔斯获得沃尔夫斯克勒10万马克悬赏大奖。

离截止期10年,圆了历史的梦。

他还获得沃尔夫奖(1996.3),美国国家科学家院奖(1996.6),费尔兹特别奖(1998.8)。

怀尔斯真的证明了费马大定理吗

是的,用了近十年时间(1986-1994)。

1986年夏,在普林斯顿大学任教的安德鲁·怀尔斯(Andrew Wiles, 1953年 - )开始全力投入证明费马大定理。

当时,怀尔斯从一个朋友那里听说美国数学家肯·里贝特已经成功证明出谷山-志村猜想与费马大定理间的等价关系,于是决定全力投入证明谷山-志村猜想,这样就可以证明费马大定理。

经过长达7年完全独立而保密的研究,怀尔斯完成了证明。

1993年6月底,怀尔斯在一个剑桥大学牛顿研究所举行的重要会议上向在场的两百名数学家宣布他已成功证明了费马大定理,引发全世界轰动。

但是,1993年8月,审稿人们发现了怀尔斯的证明过程中有一个缺陷。

怀尔斯又投入了一年多时间,到1994年9月,终于成功修正原先证明中的错误,证明费马大定理。

他的证明过程写成两篇论文,共130页,发表在1995年5月的《数学年刊》上。

参考资料:

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:课堂上听不到的数学传奇读后感

下一篇:数学文献读后感